3 research outputs found

    Affinity-based color enhancement methods for contrast enhancement in hyperspectral and multimodal imaging

    Get PDF
    This work proposes separating data analysis from hyperspectral enhancement or editing, providing a robust, context-independent, fully-tunable framework for biomarker-based contrast in wide-field imaging with a series of reliable properties that could enable its use in guided surgery. Some applications of this method powered by deep learning diagnostics will be discussed and shown.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705)

    Scatter signatures in SFDI data enable breast surgical margin delineation via ensemble learning

    Get PDF
    Margin assessment in gross pathology is becoming feasible as various explanatory deep learning-powered methods are able to obtain models for macroscopic textural information, tissue microstructure, and local surface optical properties. Unfortunately, each different method seems to lack enough diagnostic power to perform an adequate classification on its own. This work proposes using several separately trained deep convolutional networks, and averaging their responses, in order to achieve a better margin assessment. Qualitative leave-one-out cross-validation results are discussed for a cohort of 70 samples.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705)

    Automated surgical margin assessment in breast conserving surgery using SFDI with ensembles of self-confident deep convolutional networks

    Get PDF
    With an adequate tissue dataset, supervised classification of tissue optical properties can be achieved in SFDI images of breast cancer lumpectomies with deep convolutional networks. Nevertheless, the use of a black-box classifier in current ex vivo setups provides output diagnostic images that are inevitably bound to show misclassified areas due to inter- and intra-patient variability that could potentially be misinterpreted in a real clinical setting. This work proposes the use of a novel architecture, the self-introspective classifier, where part of the model is dedicated to estimating its own expected classification error. The model can be used to generate metrics of self-confidence for a given classification problem, which can then be employed to show how much the network is familiar with the new incoming data. A heterogenous ensemble of four deep convolutional models with self-confidence, each sensitive to a different spatial scale of features, is tested on a cohort of 70 specimens, achieving a global leave-one-out cross-validation accuracy of up to 81%, while being able to explain where in the output classification image the system is most confident.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R), Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS17-00055, DTS15- 00238), Instituto de Investigación Valdecilla (INNVAL16/02, INNVAL18/23), Spanish Ministry of Education, Culture, and Sports (FPU16/05705)
    corecore